Supersonic Man

August 17, 2016

will there ever be a material to replace steel?

Filed under: Hobbyism and Nerdry,the future!,thoughtful handwaving — Supersonic Man @ 12:14 pm

We constantly hear about new or exotic materials which are stronger than steel, but for many uses it turns out that steel is still the best stuff available to use. When is one of these new materials actually going to be able to replace steel?

Quite possibly never. Fancy materials like kevlar and carbon-fiber and even titanium alloy are only stronger than steel by weight.  Their sole advantage over steel is lightness.  If you compare strength by volume, they do much more poorly.  This means that if you were to, for instance, try to make a sword out of titanium, it would have a much fatter blade than a steel one, in order to have the same strength and heft.  And it would be inferior at holding an edge. You’d have to, like, insert a separate bit of tungsten carbide or something along the edges, and have a way to replace parts of that when they get chipped.

(Such a design might be a pretty good way to make a sword, actually.  A Japanese katana is a bit like this: whereas a western sword is hardened and then tempered, so the whole blade is springy and tough but not as hard as it could be, a katana is glass-hard at the edge but soft along the spine.  If it’s damaged, the edge will chip, but the back part won’t even spring back into shape if bent.  It has to be hammered straight again.  Then the edge has to be ground down where it chipped.  A titanium-plus-tungsten-carbide design would make the middle of the sword about as tough as tempered steel, but give it an edge able to cut notches into any metal.  While it lasted.)

Any materials that really are stronger than steel are generally not hard or tough, and materials harder than steel, such as diamond, are generally brittle and easily shattered.  It’s entirely possible that there’s no such thing as an exotic material that can outdo steel, even for such a mundane application as making nuts and bolts — that no possible combination of atoms can get there.

Which, to a science fiction reader like me, begs the question of whether you could make something that is not based on atoms.  Is there some kind of exotic substance or field in the far reaches of physics that could replace ordinary chemical elements as building materials?  Old-timey SF is full of improbable superstrong materials invented by advanced technology.  Could any of them ever exist?

As far as we can currently tell, the answer is no.  We might have small incremental improvements, such as putting alloys into a glasslike state instead of a crystalline one, but that’s probably all.

I did once see a physics paper which described a theoretical solid state far stronger than ordinary matter.  All you need to do to create it is subject ordinary hydrogen to a magnetic field of a billion gauss (100,000 tesla) or more.  The paper speculated that this substance might exist on the surfaces of neutron stars.  In such a field, the electron clouds around the hydrogen nuclei elongate and finally merge with each other, so the atoms form a kind of polymer.  The resulting substance is very dense — far heavier than any metal, though far lighter than neutronium — and very strong.  As best I can recall without being able to access the text of the paper, sideways to the magnetic field the strength was calculated to be somewhat proportional to the density, but lengthwise along the field lines, it would be way stronger than that.

There are three problems with this idea.  First is that it’s impossible to make a magnetic field like that to order, or to shape it for the convenience of the objects you want to create.  Second is that the effects of such a field on all the other stuff around the superstrong material would make it impossible to fit in amongst anything else made of ordinary matter.  It would, for instance, be lethal to any living thing in the area.  And the third is that this paper has not received much followup as far as I have been able to find, and what I’ve been able to track down in later work often criticizes the assumptions of earlier authors, and says their calculated numbers may have substantial errors.  It appears that “linear molecules” in intense magnetic fields are an accepted concept, but whether it would be superstrong in proportion to its density, or only in proportion to normal matter, is not clear to me.  The key value is probably the binding energy per atom, and I’m seeing estimates of that all over the map, from a few times that of common materials to around a hundred thousand times.  In newer calculations the smaller numbers seem to be predominating.

I mentioned neutronium.  What about that?  Unfortunately for our dream, it’s not a solid, it’s a superfluid.  Not to mention that it can only exist under extreme pressure, and would otherwise first explode, then undergo rapid beta-decay.  Unlike “linear molecules”, it has no resistance to flying apart.

Perhaps someday we might meet an advanced alien civilization — possibly one so advanced that they don’t even regard us as intelligent life, and can’t even remember what it was like to ever not know the answer to a question about science.  We might expect that their stuff would be made of magically wondrous materials, but then end up finding that like us, they still have to make things out of steel.

August 6, 2016

pseudo-documentation

Filed under: Hobbyism and Nerdry,Rantation and Politicizing — Supersonic Man @ 8:09 am

In my occupation as a coder, I have to read a lot of technical documentation in order to use existing software components.  And sometimes that documentation can be frustratingly incomplete or unavailable, but to me the worst situation to encounter is what I call pseudo-documentation.  It’s abundant out there.

I will give you a little example of what that’s like.  Let’s say you just encountered a line of code like this:

myThingy.FrabnicateZinxer(Zinxer.Load("arf"));

You have no idea what this does, so you look it up, and this is what you find:

Thingy.FrabnicateZinxer

Frabnicates a Zinxer for an instance of Thingy. If successful, the Zinxer will become frabnicated for this Thingy. If the Zinxer was already frabnicated for another Thingy, the new Thingy will be placed first in the frabnication order of the Zinxer. If it is already frabnicated for this Thingy, no change takes place.

Signature:
public void FrabnicateZinxer(Zinxer zinxerToFrabnicate);

Parameters:
zinxerToFrabnicate – the Zinxer which is to be frabnicated for this Thingy.

Return value:
none

Exceptions:
NullParameterException – a null value was passed as zinxerToFrabnicate.
InvalidOperationException – the Zinxer passed as zinxerToFrabnicate is in a nonfrabnicable state.

Example:
Thingy thingy = new Thingy();
Zinxer zinxer = Zinxer.Load("brb");
thingy.FranbicateZinxer(zinxer);

See also:
Zinxer class
Thingy class

 
. . . You see what the problem is?  The documentation covers all aspects of what needs to be available in reference material, but you learn nothing by reading it.  It labels the parts but says nothing about what they actually do.  All it tells you is what you had already assumed just from seeing the name — that some unknown thing undergoes some unknown process.  The only new knowledge you come away with is maddening hints of ways it might go wrong, none of which have any explanatory context.

There are many outfits which produce crap like this, but Microsoft may be the worst.  Their tech writers don’t seem to have any supervision by anyone who checks the quality of the work.  Even when they’re writing at length in tutorial or instructional form, the result is often full of gaps and omissions where crucial pieces of context are missing, not to mention inconsistencies which undermine your chances of piecing together anything definite.

Blog at WordPress.com.